

Coffee is a perennial cash crop an consists of 124 species (Davis et al

Materials and Methods

The study was conducted at Gera

(high land) and Tepi (low land). A

total of 88 coffee accessions were

involved in this study. Genetic

variability was analyzed using R-

software (vers. 4.3). Bienniality

computed according to Hoblyn et

Introduction

Genetic Variability of Coffee (Coffea arabica L.) Germplasm in biennial bearing and its impact on selection efficiency

Dawit Merga¹, Lemi Beksisa¹, Wakuma Merga², Desalegn Alemavehu¹

¹ Ethiopian Institute of Agricultural Research, Jimma Agricultural Research Center, Plant Breeding Section, P.O.BOX, 192, Jimma Ethiopia, ²Tepi Agricultural Research Center Tepi, Ethiopia: Email: dawitmerga@gmail.com

Results

Table 1. Genetic parameters and variability in yield and biennial bearing

Coffee is a perennial cash crop and												
consists of 124 species (Davis et al	Loc.	GP	2016	2017	20	018		20)19	20	020	Mean
2011) From coffee species Arabica			YLD	YLD	12	YLD	13	YLD	I4	YLD	15	YLD
coffee is highly affected by biennial		GCV	18.4	22.78	33.76	13.55	24.7	29.95	16.86	37.9	16.88	17.57
bearing and yield is higher one year		PCV	45.04	48.8	37.93	54.64	30.71	37.77	24.67	40.24	24.43	35.5
and lower the next (Joao and Ana,		GA	89.23	198.1	0.18	66.56	0.08	228.9	0.06	504.8	0.07	128.7
2018); this affects farmers' annual	Тері	GAM	15.41	21.79	61.6	6.89	40.71	48.7	23.62	73.18	23.92	17.8
incomes, world's coffee industry and		Н	16.69	21.78	79.22	6.15	64.65	62.9	46.71	88.71	47.75	24.40
selection efficiency. So far no study		CV%	41.11	43.16	17.29	52.94	18.26	23	18.01	13.52	17.66	30.87
was conducted to test variability		F-test	ns	ns	**	ns	ns	ns	ns	**	ns	ns
among Arabica coffee Germplasm in		GCV	-	11.6	24.49	14.12	19.89	12.64	18.02	26.69	-	14.48
advanced selection. Objectives: to evaluate variability among Arabica	Gera	PCV	-	17.31	44.46	29.24	33.11	28.49	29.54	33.08	-	20.84
		GA	-	229.0	0.1	104.1	0.1	250.9	0.081	909.2	-	331.4
coffee in bienniality and to identify		GAM	-	16.01	27.66	14.05	24.5	11.54	22.54	44.36	-	20.73
its effects on selection efficiency.		Н	-	44.9	30.35	23.32	36.09	19.67	37.22	65.11	-	48.28
, ,		CV%	-	25.69	74.21	51.2	52.94	51.08	46.8	39.08	-	29.93
Materials and Methods		F-test	-	ns	ns	ns	ns	ns	ns	*	-	*

GP-Genetic parameters, P&G-CV-phenotypic &genetic coefficient of variation respectively, GA-genetic advance, H-heritability, YLD-Yield, I-Biennial bireaning Inndex (eg I2-between 2016 & 2017, I3- between 2017 & 2018 etc.. CD-Critical difference, GAM- Genetic advance as percentage of mean

					Ran				
Acce.	Rank(2		Rank		k(4y		Rank		
	yrs)	RP1	(3yrs)	PR2	rs)	RP3	(5yrs	RP4	I
T-21	15	0.23	15	11.9	15	28.8	10	47.9	0.2
T-22	14	79.2	8	5.88	7	39.3	7	28.9	0.4
T-36	13	63.3	7	10	8	49.5	6	44.9	0.4
T-37	2	45.5	4	11.1	4	46.8	1	56.2	0.4
T-38	5	64.6	11	22.2	10	43.6	2	66.9	0.5
T-40	1	73.8	3	33.3	3	40.4	4	39.3	0.5
T-41	7	10.7	6	26.4	6	56.4	8	28.8	0.3
T-42	4	56.1	2	4.76	2	35	5	43.3	0.4
T-43	3	9.16	1	15.8	1	22.1	3	49	0.2
T-51	12	9.78	5	36.1	5	51.7	9	4.66	0.3
							100		
<10hy	70%		80%		90%		%		

Table 2. Biennial bearing and line selection at Tepi

Figure 1. Response to selection vs Bienniality; at Tepi (A) and Gera(B)

Table 3. Biennial bearing and selection	n of
promising lines at Gera	

<u> </u>	Rank		Rank		Rank		
Acce.	(2YR S)	RP1	(3YRS)	RP2	(4YRS)	RP3	I
T-50	16	2.24	23	32.1	1	52	0.3
T-78	1	82.9	1	81.5	2	8.7	0.6
T-80	11	5.34	14	40.9	3	29	0.3
T-53	5	39	4	56.2	4	6.2	0.3
T-39	46	39.6	8	76.2	5	20	0.5
T-38	23	18.2	37	32.9	6	38	0.3
T-70	12	58.7	10	72.9	7	17	0.5
T-60	2	0.79	2	8.33	8	22	0.1
T-43	6	21.9	15	36.6	9	6.9	0.2
T-85	8	42.2	5	59.3	10	24	0.4
T-67	83	8.21	7	80.4	11	39	0.4
T-64	15	39.9	19	54.8	12	9.1	0.4
T-51	9	13.1	3	49.4	13	35	0.3
T-59	26	33.2	30	51.7	14	18	0.3
<15hy	66%		66.7%		100%		

Rank-(2-5YRS) - Ranks of the top 10 (at Tepi) and 15 (at Gera) genotypes using mean of over two, three, four and five years, RP1-4 - Relative percentage bienniality between consecutive years, <15 HY in % - The top 15 high yielder in percentage and I-Biennial intensity

Conclusion

al. (1936).

Variability was observed among coffee accessions in yield performance and biennial bearing. Alternate bearing could affect response to selection which lead to less selection efficiency. Early selection, before four harvesting seasons excluded 30-40% high yielders from advanced selection. Selection at four harvesting seasons revealed 90% and more selection efficiency which is ideal for promising line selection. In general, one has to be cognizant the biennial bearing nature of Arabica coffee during advanced selection.

References

Davis A.P., Tosh J., Ruch N. & Fay M.F., 2011. Growing Coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Bot. J. Linn. Soc. 167, pp. 357-377

Joao C. and Ana B., 2018. Biennial bearing in apple cultivars. Rev. Ceres, Vicosa, 65 (2), pp. 144-149.

Hoblyn, T.N., Grubb N.H., Painter A.C. and Wates, B.L. 1936. "Studies in biennial bearing," Journal of Pomology and Horticultural Science, vol.14, no.1, pp. 39-76, 1936