

Transcriptomic effects of drought and the positive effect of elevated CO₂ in promoting tolerance in two *Coffea* sp. genotypes

MARQUES ISABEL¹ (isabelmarques@isa.ulisboa.pt), FERNANDES Isabel², PAULO Octávio S.², LIDON Fernando C.³, L. PARTELLI Fábio⁴, DAMATTA Fábio M.⁵, RIBEIRO-BARROS Ana I.⁶, RAMALHO José C.⁶

1 Centro de Estudos Florestais, Laboratório Associado TERRA, ISA/University of Lisbon, Lisbon, Ostugal 3 : CE3C— Center for Ecology, Evolution and Environmental Changes and CHANGE, Universidade de Lisbon, Lisbon, Portugal 3 : Unidade de Geobiociências, Geoegnahnarias e Geotecnologias (GeobioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade de Lisbon (UNL), Caparica, Portugal 3 : Cento Humestidade de Lisbon, Lisbon, Portugal 3 : Unidade federal Espírito Santa (UFES), São Mateus, Brazil ; 5 Departamento de Biologia Vegetal, Universidade Federal Viçosa, Viçosa, Brazil ; 6 Centro de Estudos Florestais, Laboratório Associado TERRA, ISA/University of Lisbon, Dertugal - 2 Espírito Santa (UFES), São Mateus, Brazil ; 5 Departamento de Biologia Vegetal, Universidade Federal Viçosa, Viçosa, Brazil ; 6 Centro de Estudos Florestais, Laboratório Associado TERRA, ISA/University of Lisbon, Lisbon, Portugal

Introduction

Drought is a major constraint to plant growth and productivity worldwide and will aggravate with predicted climate changes. We hypothesized that elevated air $[CO_2]$ (eCO₂) interacts at the transcriptomic level to promote metabolic performance, and acclimation mechanisms.

Materials/Methods

The impact of drought at the transcriptomic level was assessed on the leaves of two cropped *Coffea* sp. genotypes (*C. canephora* cv. Conilon Clone 153, CL153; *C. arabica* L. cv. Icatu Vermelho), which were grown under ambient (aCO₂; 380 ppm) or elevated (eCO₂: 700 ppm) air [CO₂], and well-watered (WW), and moderate (MWD) or severe (SWD) water deficit [1].

Figure 1: Patterns of differentially expressed genes (DEGs) at MWD or SWD in comparison with WW in (A) Icatu and (B) CL153 plants grown under either aCO_2 (lighter colors) or eCO_2 (darker colors), at 25/20 °C (day/night). DEGs specifically found under MWD (Blue) or SWD (Yellow), or expressed by both water conditions (Green).

Results/Discussion

Expression levels were barely affected by MWD, while the SWD condition led to a down-regulation of most differentially expressed genes (Figure 1). eCO_2 attenuated the drought impact in the transcripts of both genotypes, mostly in Icatu.

Under MWD and aCO_2 , DEGs were mostly down-regulated in the two genotypes, but they were substantially reduced under eCO_2 . The positive effect of eCO_2 was even more relevant under SWD in Icatu plants, which showed an increase in up-regulated DEGs.

Conclusion/Perspectives

Icatu and CL153 plants showed different leaf transcriptomic mechanisms in response to drought, with minor effects of MWD and the positive action of eCO₂. However, the photosynthetic pathway was affected, namely under SWD and eCO₂, contrary to previous physiological and biochemical studies. Results suggest the existence of a complex post-transcriptional regulatory mechanism in *Coffea*, explaining some apparent discrepancies between transcriptomic and physiological (and proteomic) data in these genotypes, thus highlighting the need for integrated studies to a full understanding of plant responses to drought and/or eCO₂.

References: [1] Marques I. et al. Overexpression of Water-Responsive Genes Promoted by Elevated CO₂ Reduces ROS and Enhances Drought Tolerance in Coffea Species. International Journal of Molecular Sciences. 2023; 24(4): 3210. https://doi.org/10.3390/ijms24043210