

# Soluble sugar dynamics in leaves of two coffee genotypes (*C. arabica* and *C. canephora*) subjected to severe heat and/or drought

Isabel P. PAIS <sup>1,2</sup>, António E. LEITÃO <sup>2,3</sup>, José N. SEMEDO <sup>1,2</sup>, Danielly DUBBERSTEIN <sup>4</sup>, Fábio L. PARTELLI <sup>4</sup>, Fernando C. LIDON <sup>2</sup>, Fernando H. REBOREDO <sup>2</sup>, Paula SCOTTI-CAMPOS <sup>1,2</sup>, Isabel MARQUES <sup>3</sup>, Fábio M. DAMATTA <sup>5</sup>, Ana I. RIBEIRO-BARROS <sup>2,3</sup>, José C. RAMALHO <sup>2,3</sup>

## Introduction

Coffee bean trade involves over 100 million people, with a major economic and social impact worldwide. As climate change worsens, coffee plants become increasingly exposed to rising temperatures and drought events that greatly reduce C-assimilation <sup>[1]</sup>, limiting growth, yield and bean quality. We highlight the effects of heat and/or drought in coffee leaf soluble sugars (SS).

## Materials/Methods

*C. arabica* L. cv. Icatu and *C. canephora* Pierre ex A. Froehner cv. Conilon (CL153) 8 years old plants grown in 80 L pots under controlled conditions (air temperature, RH, irradiance, photoperiod and  $CO_2$  L<sup>-1</sup>), were gradually exposed to severe drought (SWD) or maintained well-watered (WW), and afterwards submitted to a gradual temperature raise from 25/20 ° C (day/night) up to 42/30 °C (0.5 °C day<sup>-1</sup>) <sup>[2]</sup>. The effect on leaf SS was evaluated through HPLC <sup>[3]</sup>.

#### References:

[1] Duberstein D. et al. 2020. Front. Plant Sci., 11:1049. doi:10.3389/fpls.2020.01049.

- Semedo J.N. *et al.* 2021. Tree Physiol. doi: 10.1093/treephys/tpaa158.
  Ramalho J.C. *et al.* 2014. Plant Biology. doi:10.1111/plb.12018.
- [4] Saddhe A.A. et al. Physiologia Plantarum, 2021, 171: 739-755. doi:10.1111/ppl.13283.

### **Results/Discussion**

•No differences in total SS content in either genotype until 37 °C, but by 42 °C the CL153-WW plants showed doubled contents, as compared with 25 °C (Fig. 1).

•SWD greatly increased total SS in both *cvs*. at all temperatures (except in CL153 at 42 °C), but Icatu-SWD plants usually showed higher SS values than CL153 counterparts, especially at 42 °C (Fig. 1).



Figure 1: Changes in total soluble sugars leaf content.

Figure 2: Changes in mannitol leaf content.

Different letters express significant differences between °C treatments for the same water level (A, B), or between water availability levels for each °C treatment (a, b).

• Changes in total SS were closely associated with mannitol variations that represented up to 25% of total SS in WW plants at 25 °C, but raised to *ca*. 80% in both genotypes under single SWD (25 °C) or under maximum stress conditions (SWD-42 °C), especially in Icatu (Fig. 2).

## **Conclusion/Perspectives**

Icatu plants exhibited increased mannitol levels under SWD (25 and 42 °C) reflecting a positive response, as this molecule acts as an osmoprotectant and reactive oxygen species scavenger, protecting membranes, proteins, and the photosynthetic apparatus being linked to stress tolerance <sup>[4]</sup>.

Ν νΛ



