

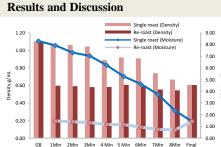
Impact on Sensory Quality and Physicochemical Changes in Coffee during Re-roasting

S8834_Taroh SUZUKI

*Taroh Suzuki¹, Rasool Khan Amini¹, Yutaka Kitamura², Mito Kokav

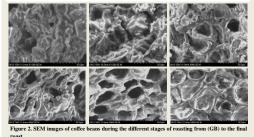
Graduate School of Life and Environmental Sciences, University of Tsukuba (Japan), ². Faculty of Life and Environmental Sciences, University of Tsukuba (Japan)

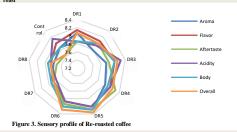
Abstract

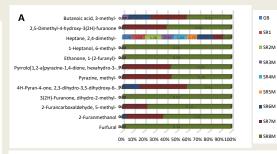

The impact of re-roasting and the physical changes occurring during the roasting process were investigated in this study. Coffee samples were roasted using a laboratory-scale roaster, and samples were collected every minute throughout the roasting process for subsequent physiochemical analysis. Additionally, the roasted coffee underwent a re-roasting process using same roasting profile.

The results indicated that coffee roasted for 5 minutes with 5% moisture content during reroasting exhibited superior sensory attributes. Further research will be conducted to analyze the aromatic and non-aromatic compounds in the reroasted coffee.

Introduction


- The aroma and flavor of coffee that are desired for consumption are created during roasting.
- During roasting the coffee beans go through chemical and physical changes.
- The composition depends on the roasting degree which identified through outside color of roasted beans.
- Roasting causes the beans to expand, lose moisture, and develop their characteristic flavor.
- Re-roasting coffee beans gives flavor complexity, deeper flavor, uniformity, and increases its shelf life.


Objective: To evaluate the impact of re-roasting and different moisture contents on the physiochemical and sensory properties of roasted coffee.



GB 1Min 2Min 3Min 4Min 5Min 6Min 7Min 8Min F

Figure 1. Density and moisture changes during roasting

-		
B Butanoic acid, 3-methyl-	0.10 0.14 0.18 0.16 0.14 0.15 0.16 0.16 0.13	Dr1M
2,5-Dimethyl-4-hydroxy-3(2H)-furanone	0.08 0.09 0.11 0.10 0.07 0.06 0.07 0.04 0.06	Dr2M
Heptane, 2,4-dimethyl-	0.77 1.06 1.12 0.90 0.77 0.73 0.73 0.78 0.72	
1-Heptanol, 6-methyl-	0.05 0.00 0.07 0.06 0.09 0.05 0.00	DR3M
Ethanone, 1-(2-furanyl)-	0.10 0.14 0.12 0.11 0.11 0.00 0.12 0.00	DR4M
Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3	0.11 0.09 0.12 0.06 0.09 0.07 0.09 0.09 0.11	
Pyrazine, methyl-	0.12 0.14 0.17 0.07 0.12 0.13 0.14 0.16 0.14	Dr5M
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6	0.14 0.20 0.21 0.11 0.12 0.04 08 00.11	Dr6M
3(2H)-Furanone, dihydro-2-methyl-	0.11 0.12 0.14 0.14 0.14 0.14 0.17 0.15 0.10	DIGINI
2-Furancarboxaldehyde, 5-methyl-	0.19 0.24 0.24 0.23 0.21 0.24 0.21 0.17	DR7M
2-Furanmethanol	1.37 1.65 1.79 1.89 1.67 1.80 1.87 2.23 1.33	
Furfural	0.43 0.44 0.56 0.44 0.44 0.34 0.33 0.20 0.38	DR8M
0	% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%	Control

Figure 4. Aroma compounds relative concentration in roasted coffee (A) Initial roasting, (B) Re-roasting

- During the roasting process, coffee beans gradually lose moisture content which reduces its density (fig.1).
- SEM images showed that the dense structure of green beans changed porous, with the pore size increasing from 32 µm in green beans to 1236 µm after 9 minutes of roasting (fig.2).
- GCMS analysis revealed that most of the aromatic compounds in coffee are produced during roasting, and the number of aromatic compounds increases with roasting time (fig.4).
- The intensity of some aromatic compounds increased during re-roasting, probably due to the decrease in water content, which accelerated the Maillard reaction and caramelization.

Analysis

- Color- As Lab values (Color meter)
- Moisture- (Oven drying 105 ±1 °C)
- Density-(Freely settled density g/mL)
- HPLC- (LC-20A Prominence, Shimadzu) using C18 VP-ODS (250 × 4.6 mm) column.
- GCMS-Gas Chromatograph-Mass Spectrometer GCMS-QP2010 Plus
- SEM- Scanning Electron Microscopy
- (TM4000)
- Sensory- Specialty Coffee Association standardized method

Conclusion

- The moisture content of the coffee beans gradually decreased during the first roasting. This had an impact on the second roast, with beans with a moisture content of 4.6-6.2% showed satisfactory results.
- GCMS analysis revealed that the concentration of aroma compounds increased along with roasting time.
- Sensory data showed that the re-roasted coffee samples with reduced moisture were more aromatic and flavorful.
- Overall, coffee re-roasted at 5 minute roasts had superior sensory attributes.

Acknowledgment

The coffee beans used in this study were provided by SAZA Coffee Co Ltd, Japan