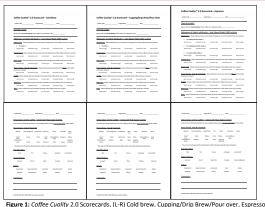


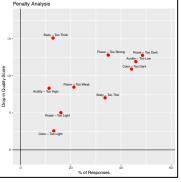
Coffee Cuality 2.0 – New cupping, drip brew, cold brew and espresso evaluation scorecards, protocols and analyses UCDAVIS

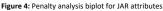
Jean-Xavier Guinard, Benjamin Elliott and Lik Xian Lim

Abstract

#8508


Department of Food Science and Technology and UC Davis Coffee Center, University of California, Davis, USA


Introduction


Current methods for the sensory evaluation of coffee quality blur the lines between analytical/intensity testing with trained judges and affective/hedonic testing with consumers, and provide little justification for the score given to the coffee. The *Coffee Cuality* Method (www.coffeecuality.com) provides a comprehensive assessment of the sensory quality of coffee that includes an overall quality rating on a 100-point scale, just-about-right (JAR) scaling of select attributes, check-all-that-apply (CATA) selections from a list of sensory and holistic attributes and open comments which are then analyzed with a comprehensive suite of statistical tools, with the dual purpose of documenting quality scores and assessing expert performance.

Methodology

We propose new and improved *Coffee Cuality* scorecards (Figure 1), protocols and analyses which are based on (1) testing with 56 Q-graders, SCA-certified and industry expert coffee tasters who evaluated the sensory quality of 12 specialty coffees and commercial blends brewed with their preferred method (cupping, drip, pour over or espresso); (2) focus groups with a subset of 18 experts; our Coffee Taster's Flavor Wheel (Spencer et al., 2016); and (4) the findings from our extensive sensory and consumer research on drip brew and cold brew coffee (Batali et al., 2022; Guinard et al., 2023).

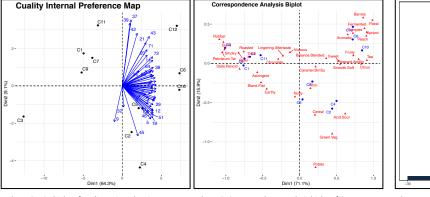


Figure 2: PCA biplot of quality ratings showing experts and coffees (n-56 experts).

Figure 3: Correspondence analysis biplot of CATA selections and coffees.

Key Learnings

- Experts were aligned in their quality ratings (Figure 2).
- Key drivers of quality were identified by penalty and penalty/lift analyses of JAR ratings and CATA selections, respectively (Figures 4 & 5).
- Correspondence analysis of CATA selections created a flavor map of the coffees (Figure 3).
- Word clouds could be derived from CATA selections and comments to describe the coffees.
- Coffee Cuality was easy to use and allowed for the 'deconstruction' and justification of the quality ratings.

Improvements

JAR and CATA attribute lists were adjusted for each coffee type to better account for their respective appearance, flavor profile and mouthfeel.

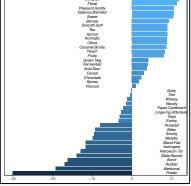


Figure 5: Penalty/lift analysis of CATA selections.

Conclusion/Perspectives

Coffee Cuality 2.0 offers the coffee community innovative and validated sensory and sensometrics tools to evaluate a range of coffee beverages for their sensory quality, and documents expert performance.

Acknowledgments:

We thank the 5[°]G experts who tested the original Coffee Cuality Method, Andrew Cotter for website design and the members of The (original) Espresso Protocol¹¹⁶ Group (Timothy O'Connor, Timothy Schilling, Massimo Bataglia, [and Jean-Xavier Guinard]) for sharing their expertise in espresso coffee quality, preparation, and characteristics.

References:

Spencer, M., Sage, F., Velez, M. and Guinard, J.-X. 2016. Using single free sorting and multivariate exploratory methods to design a new Coffee Taster's Flavor Wheel. 2016. J. Food Science, 81(12):S2997-S3005. https://doi.org/10.1111/1750-3841.13555

Guinard, J.-X., Frost, S., Batali, M. E., Catter, A., Lim, L. X. and Ristenpart, W. D. 2023. A new Coffee Brewing Control Chart relating sensory properties and consumer liking to brew strength, extraction yield, and brew ratio. J. Food Science, 88(5):2168-2177. <u>http://doi.org/10.1111/1750</u> 3841_16531.

Batali, M. E., Thompson, A., Lim, L.X., Liang, J., Yeager, S. Ristenpart, W. D. and Guinard, J.-X. 2022. Sensory analysis of full immersion coffee: Cold hrew is more floral, and less bitter, sour, and rubbery than hat brew. Foods, 11(16), 2440. <u>https://doi.org/10.3300/foods11162440</u>.