

Impact of water availability constraints on photosynthetic activity in elite genotypes of *Coffea arabica* L. and the mitigating effect of elevated atmospheric [CO₂]

<u>Joana I. MARTINS^{1,2}</u> (jis.martins@campus.fct.unl.pt), Ana P. RODRIGUES¹, Isabel MARQUES¹, José N. SEMEDO^{2,3}, Isabel P. PAIS^{2,3}, Maria J. SILVA^{1,2}, António E. LEITÃO^{1,2}, Fernando C. LIDON², Ana I. RIBEIRO-BARROS^{1,2}, José C. RAMALHO^{1,2}

¹ PlantStress& Biodiversity Lab, Centro de Estudos Florestais, Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidad e de Lisboa, 2784-505 Oeiras, e 1349-017 Lisboa, Portugal. ² Unidade de Geobiociências, Geoengenharias e Geotecno logias, Faculdade de Ciências e Tecnologia, Universidad e NOVA de Lisboa, 2829-516 Caparica, Portugal. ³ Unida de de Investigação em Bio tecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, Oeiras, 2784-505, Portugal.

INTRODUCTION

Drought threatens coffee crop sustainability, and unveiling its impact and plant resilience on the photosynthetic pathway is crucial ¹. Elevated [CO₂] partly counteract the negative impacts of water deficit coffee plants, namely by enhancing photosynthesis ribulose-1,5- (P_n) increased bisphosphate carboxylase/oxygenase (RuBisCO) substrate availability 2. Here, we assessed the extent to which drought affects the photosynthetic performance of Coffea arabica L. genotypes, under normal (aCO₂) and high (eCO_2) air $[CO_2]$.

MATERIALS/METHODS

Plants from *C. arabica* L. *cvs*. Geisha 3 (**G3**), Marsellesa (**Mar**), and their Hybrid (**Hy**) were grown under distinct air $[CO_2]$ and exposed to:

Air $[CO_2]$ conditions: 400 or 700 μ L L⁻¹ (aCO₂ or eCO₂)

Well-watered (**WW**), Mild drought (**MWD**), Severe drought (**SWD**) and Recovery period (**Rec14**)

The total activity of RuBisCO was performed in the leaf samples through spectrophotometric analysis ²

CONCLUSIONS

- ➤ Water deficit significantly limits *C. arabica* photosynthesis, but eCO₂ can attenuate the adverse effects.
- ➤ Recovery patterns suggest varying resilience among genotypes, offering insights into climate acclimation ability.

jis.martins@campus.fct.unl.pt

RESULTS/DISCUSSION

The decline of water availability gradually reduced P_n and stomatal conductance (g_s) regardless of genotype and [CO_2]. Under a CO_2 , internal [CO_2] (C_i) increased at SWD, suggesting the dominance of non-stomatal limitations to photosynthesis. The enzyme RuBisCO has been indicated as an important component in the resilience response to adverse environmental conditions 2 . The total activity of RuBisCO declined under MWD and SWD (vs. WW) at both [CO_2] levels, though G3 and Hy showed slightly higher activity under SWD than MWD. Notably, e CO_2 mitigated drought impacts across genotypes, enhancing P_n as compared to a CO_2 : G3 (WW: 39%; MWD: 26%; SWD: 213%); Mar (WW: 59%; MWD: 79%; SWD: 15%); Hy (WW: 58%; MWD: 70%; SWD: 250%). Contrary to other genotypes 3 , these genotypes showed only a partial recovery of P_n and P_n and P_n and P_n all lightly better recovery under e P_n activity, with a slightly better recovery under e P_n

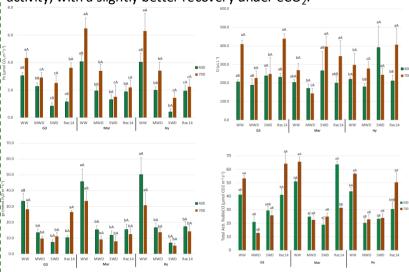


Figure 1. Net photosynthetic rate (P_n) (A), stomatal conductance (g_s) (B), internal $[CO_2]$ (C_i) (C) and total activity of RuBisCO (D) in *Coffea arabica* L. cv. Geisha 3 (G3), Marsellesa (Mar) and their Hybrid (Hy) grown under ambient (400 μ L L⁻¹, aCO₂) or elevated (700 μ L L⁻¹, eCO₂) air $[CO_2]$, and submitted to well-watered (WW), mild drought (MWD), severe drought conditions (SWD) and recovery period (Rec14). For each parameter, different letters after the mean values \pm SE (n = 5) express significant differences between water treatments within each $[CO_2]$ (a, b, c), or between $[CO_2]$ within each water treatment (A, B), always separately for each genotype.

References:

Acknowledgements: Coffee plants were provided by Hervé Etienne (Cirad-UMR DIADE, France) in the framework of the BreedCAFS project. Work received funding support from European Union's Horizon 2020 research and innovation program (grant agreement No 727934, proj. BreedCAFS), and by Fundação para a Ciência e a Tecnologia through the Scientific Employment Stimulus - Individual Call (CEEC Individual - 2021.01107.CEECIND/CP1689/CT0001, to IM), through the research units CEF (UIDB/00239/2020) and GeoBioTec (UIDP/04035/2020), and the associated laboratory TERRA (LA/P/0092/2020).

¹ Semedo et al. 2021. *Tree Physiology*, 41, 708-727. doi: 10.1093/treephys/tpaa158.

² Rodrigues et al. 2016. *Global Change Biology*, 22, 415-431. doi: 10.1111/gcb.13088.
³ Dubberstein et al. 2020. *Frontiers in Plant Science*, 11,1049. doi: 10.3389/fols.2020.01049.