

EVALUATING THE USE OF δ^{13} C STABLE ISOTOPE & CROP WATER STRESS INDEX IN MONITORING OF DROUGHT STRESS IN COFFEE VARIETIES

Janice Nakamya*, Mathilde Vantyghem, Jonas Van Laere Roel Merckx, Rebecca Hood-Nowtny, Silas Mukune, Jeremiah Mwangi, Gerd Dercon

1. Introduction

- Determining the thresholds for drought stress in perennial crops, such as coffee, is a challenge
- Stable ¹³C isotope could offer a rapid, efficient assessment using leaf punch samples
- But this requires a homogenous validated procedure

2. Methodology

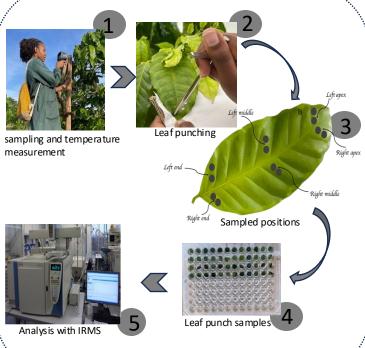


Figure 1: sampling, sample preparation and analysis

3. Research questions

- Leaf age and spatial leaf position is the best indicator of water stress
- ii. Best leaf and time to measure for CWSI
- iii. Relationship between CWSI and δ^{13} C

4. Results

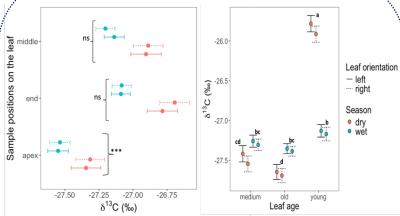


Figure 2: Variation in δ^{13} C in leaf sample positions and age

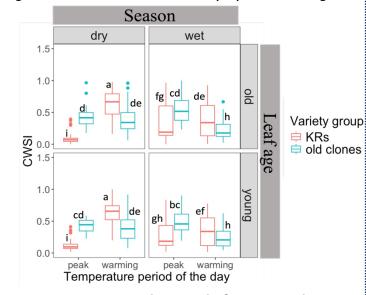


Figure 3: Crop water stress index across leaf age, time and season

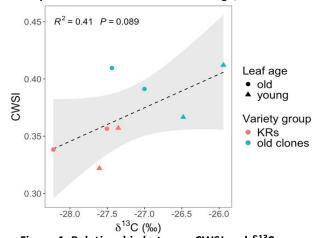


Figure 4: Relationship between CWSI and δ^{13} C

5. Conclusions

- 1. Samples obtained at the distal postion of the leaf were more enriched and great variability in $\delta^{13}\text{C}$ between seasons
- 2. Young leaves were more enriched in δ^{13} C than the rest during the dry season but no difference between the rest
- 3. Increase in CWSI in the dry season during the warming period which was more reliable with no other environmental interferences