

Modifications in Leaf Anatomical Traits of Coffea Spp. **Genotypes Induced by Management × Season Interactions**

Larícia Olária E. Silva¹, Rafael N. de Almeida², Rodrigo B. B. Feitoza², Maura Da Cunha², Fábio Luiz Partelli¹ (partelli@yahoo.com.br)

¹ Federal University of Espírito Santo, ES, Brazil; ² State University of North Fluminense Darcy Ribeiro, RJ, Brazil

Introduction

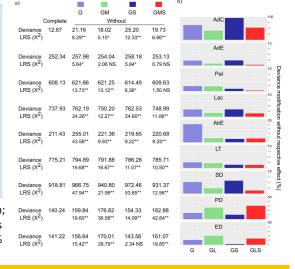
Leaf by anatomy is shaped environmental factors such as light, water availability, and altitude [1], which influence physiological processes like light distribution, CO₂ diffusion, transpiration, and structural integrity [2]. This study examined anatomical variations in Coffea spp. genotypes under different managements and seasons.

Materials/Methods

Six genotypes were studied: five *C. canephora* (Conilon: LB1, P2, A1, Clementino, K61) and one C. arabica (cv. Arara). They were cultivated under three managements: full-sun monoculture at low altitude (MLA), full-sun monoculture at high altitude (MHA), and low-altitude agroforestry system (AFS), in both winter and summer. Recorded traits included cuticle and epidermis thickness (adaxial/abaxial), palisade and lacunar parenchyma thickness, total leaf thickness, stomatal equatorial and polar diameters, and stomatal density.

Full-sun monoculture at low altitude

Low-altitude agroforestry



Results/Discussion

The genotype influenced all leaf anatomical traits investigated (Fig. 1a). The effects of genotype x management interactions were more intense than those of genotype x season interactions on traits such as leaf thickness, palisade parenchyma thickness, abaxial epidermis and polar and equatorial diameter of the stomata (Fig. 1b). The management AFS was more effective in altering leaf anatomical traits than the altitude differences between MLA and MHA, regardless of the season.

Figure 1: a) Effects of genotype (G), management (M), and season (S) on genetic value prediction; b) Deviance test for Coffea spp. under three managements and two seasons, based on leaf traits (AdC, AdE, Pal, Lac, AbE, LT, ED, PD, SD). LRT = deviance difference. * and ** = significant at 5% and 1% (χ^2); NS = not significant.

Conclusion/Perspectives

Coffee spp. plants adjust leaf anatomical structures in response to different environments, defined by managements and seasons. The development of coffee cultivars capable of adapting to different environmental conditions will make the implementation of more sustainable cultivation systems possible

Acknowledgments

The authors thank the farmers Júlio Diego Bonomo and Núcleo de Excelência de Pesquisa em Café conilon, Fapes, CNPq and Capes for their help with the Aguiar, logistics of the experiment.

References:

Dorken VM, Lepetit B, 2018. Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Mill. (Pinaceae, Coniferales): a combined approach. Plant Cell Environ 41:1683-1697.