

LEAF RUST SEVERITY IN ACATENANGO, **GUATEMALA, IS RELATED TO COFFEE NUTRITION FEATURES**

Mathilde CHEN (mathilde.chen@cirad.fr) Eder GONZÁLEZ, Sergio VÍLCHEZ, Francisco ANZUETO, Jacques AVELINO

INTRODUCTION

- Coffee leaf rust (CLR) is a major disease in
- Uncertainty remains on the effect of plant nutrition on CLR severity.

What is the effect of **nutrition*** on coffee leaf rust severity?

*soil fertility, leaf chemical composition, and fertilization practices

DATA COLLECTION IN A 2-YEAR EXPERIMENT IN ACATENANGO, GUATEMALA

Reported for 96 unique site-year combinations

Scan me

for more

details

CLR severity assessments

23 nutrition features

= soil physico-chemical variables, leaf chemical composition & fertilization practices

Potential confounding factors

= topography, shading environment, other farming practices, and fruit load

SOIL FERTILITY FEATURES RELATED TO LEAF CHEMICAL COMPOSITION

Selection of 12 soil physico-chemical variables related to 3 variables of leaf chemical composition

→ Aggregated into a nutrition score:

Nutrition score = \sum selected variables * coefficient

representing the nutrition status of each site-year

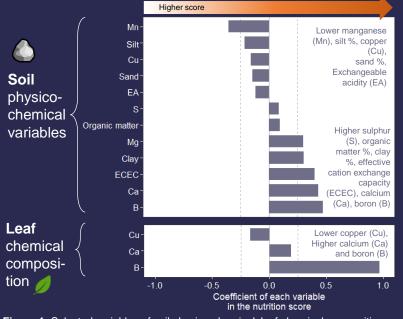
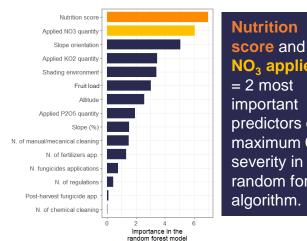



Figure 1: Selected variables of soil physico-chemical, leaf chemical composition and their associated coefficient in the nutrition score construction

CONCLUSIONS & PERSPECTIVES

- Maximum CLR severity is related to physicochemical characteristics in soil and chemical composition of coffee leaves.
- High NO₃ applied reduced maximum CLR severity according to the random forest model, but not in the linear mixed model.
- Effect of fertilization practices must be further examined.

IMPORTANCE OF NUTRITION FEATURES FOR PREDICTING MAXIMUM CLR SEVERITY

NO₃ applied = 2 mostimportant predictors of maximum CLR severity in a random forest algorithm.

Figure 2: Importance of nutrition score, NO₃ quantity, and other factors in predicting maximum CLR severity using a random forest algorithm

INDEPENDENT ASSOCIATION BETWEEN NUTRITION SCORE & MAX. CLR SEVERITY

Nutrition score associated with maximum CLR severity in a linear mixed model:

Nutrition score

Lower severity Estimated CLR severity when applied NO₃ > 27 g/plant but high uncertainty Applied quantity of NO3 (g/plant)

The model suggested no association with any fertilization practices.

Figure 3: Marginal effects of nutrition score and applied NO3 quantity on predicted maximum CLR severity from a random forest algorithm