





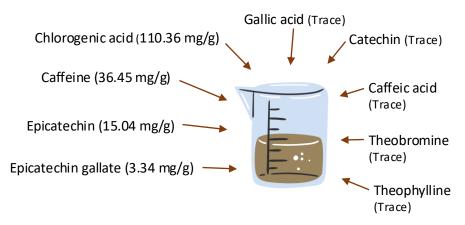


# VALORIZATION OF DEFECTIVE GREEN COFFEE BEANS THROUGH PILOT-SCALE EXTRACTION: PHENOLIC AND NUTRITIONAL COMPOSITION OF CONCENTRATED EXTRACTS

<u>Camargo, Gisele Anne</u><sup>1</sup> (gisele@ital.sp.gov.br); Alves Macedo, Juliana<sup>2</sup>; de Matuoka e Chiocchetti, Gabriela<sup>2</sup>; Dos Santos Silva, Julia Millena<sup>2</sup>; de Medeiros Pinheiro Souza, Sarah<sup>2</sup>; Bataglia da Silva, Lidiane<sup>1, 2</sup>; Santos Espindola, Aloisio<sup>3</sup>

<sup>1</sup>PBIS - Integrated Biotechnology Platform for Healthy Ingredients, Institute of Food Technology (ITAL), Campinas, SP, Brazil; <sup>2</sup>Bioactive Compounds Laboratory (LCB), Food Science and Nutrition Department of FEA/UNICAMP, Campinas, SP, Brazil; <sup>3</sup>Industrial Production Management, FATEC, Itatiba, SP, Brazil

#### Introduction


Green coffee beans with high defect scores, while commercially valuable, are typically classified below specialty-grade coffees and underutilized in the development of value-added ingredients. This study focused on the analytical characterization of phenolic profiles in extracts from *Coffea arabica* (26% defective beans including black and green/immature, 2021/2022 harvest, Minasul Cooperative, Varginha, Brazil) using high-performance liquid chromatography with diode array detection (HPLC-DAD), following pilot-scale extraction.

### Table 1. Physicochemical characterization of coffee beans

| Determination            | Results<br>(g/100 g) |
|--------------------------|----------------------|
| Moisture                 | 4.87 ± 0.06          |
| Ashes                    | 4.16 ± 0.03          |
| Lipids                   | 16.33 ± 0.13         |
| Proteins                 | 13.82 ± 0.11         |
| Soluble dietary fibers   | 5.10 ± 0.00          |
| Insoluble dietary fibres | 42.27 ± 0.27         |
| Total carbohydrates      | 60.82                |

#### Materials/Methods

The pilot-scale extraction involved 500 g of ground beans  $(0.5-1.0 \, \text{mm})$  particle size) mixed with 10 L of 50% (v/v) ethanol—water solution at a 1:20 m/v ratio. The mixture was heated at 55-65 °C under vacuum (520 mmHg) in a steam jacketed kettle (Mecamau, Brazil) with continuous agitation for 60 minutes, and then filtered through 18 mesh, reaching 3.09% of total solids. The extraction was performed in triplicate.

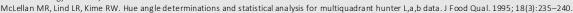


### Results/Discussion

The energy value was 446 kcal/100 g. The extract had a pH of 6.04, water activity of 0.557, and displayed a moderately bright yellow-brown coloration (L\* 56.57  $\pm$  1.23; a\* 1.14  $\pm$  0.18; b\* 19.84  $\pm$  0.68).




Figure 1: Phenolic compounds in the lyophilized coffee extract showed by HPLC-DAD analysis Figure 2: Coffea beans defective


## Conclusion

These findings highlight the potential of lower-grade green coffee beans as sources of phenolic-rich extracts. The analytical stability of key bioactive compounds reinforces the feasibility of their application in functional ingredient development for food and beverage innovations.

#### References

AO AC. Official Methods of Analysis. 19th ed. Gaithersburg, MD, USA: Association of Official Analytical Chemists; 2012. Methods 920.93, 945.38F, 985.29, 991.43. Kalil V, Passmore R, USDA. Manual of Nutritional Energy Conversion Factors. São Paulo: Manole; 1975.





