

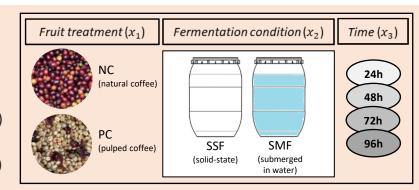
33917

Lactic acid production behavior during different post-harvest fermentation methods for arabica coffee fruits (cv. Tupi)

MATHEUS DE SOUZA GOMES¹, Arlley SOUSA¹, Ordarlei SILVA¹, Luiza CARDOSO¹, Renata ROCHA², Marcelo CRUZ¹, Lívia SILVA¹, Gisele COSTA³, Parafino LUÍS¹, Pedro BERTARINI¹, Liliane OLIVEIRA⁴, Laurence AMARAL¹, Libia SANTOS¹

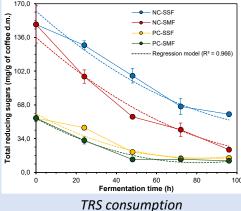
1Federal University of Uberlândia (UFU), 2Federal University of Viçosa (UFV), 3Federal Rural University of Rio de Janeiro (UFRRJ), 4Federal University of São João del-Rei (UFSJ)

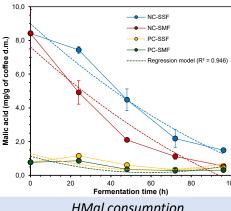
Introduction

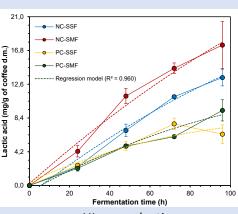

- → Lactic acid bacteria (LAB) in coffee microbiota^[1]
- → Primary pathway: conversion of reducing sugars
- → Malolactic fermentation: conversion of malic acid
- → Lactic acid: development of acidity, flavor and mouthfeel^[2]
- → Post-harvest processing of coffee fruits
- → Fruit treatment and fermentation medium conditions
- → Self-induced anaerobic fermentation (SIAF) kinetics^[3,4]
- → Factorial design applied in metabolomic screening

OBJECTIVE: To evaluate lactic acid production in different fermentation methods applied to arabica coffee fruits (cv. Tupi)

Methodology


- → Fruits cultivated at 1030 m
- → Cerrado Mineiro region (Brazil)
- → Fermentation in 200 L HDPE bioreactors
- → Detection of chemical composition in HPLC system: Total reducing sugars (TRS, sucrose/glucose/fructose) Malic acid (HMal) and lactic acid (HLac)
- → Use of a factorial experimental design (p-value < 0.05)
- → Multiple regression modeling:


 $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_3^2 + \beta_5 x_1 x_2 + \beta_6 x_1 x_3 + \beta_7 x_2 x_3$



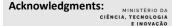
170.0

Results

HMal consumption

HLac production

Conclusions & Perspectives


- → NC produced higher HLac content (higher initial substrate concentration)
- → LAB seem to show a better metabolic behavior in SMF
- → PC-SSF and PC-SMF showed same HLac production up to 48 h
- → Better results were observed for NC-SMF during all kinetic evaluation

Regression variable effects:

Compound	Regression coefficients							
	β_0	β_1	β_2	β_3	β_4	β_5	β_6	β_7
TRS	49,22	-29,67	-7,81	-38,25	15,56	5,40	16,63	0,00
HMal	2,03	-1,76	-0,38	-2,08	0,64	0,31	1,78	0,00
HLac	6,72	-1,86	0,74	6,07	-0,93	-0,64	-2,02	0,72

References:

- 1. COSTA et al. (2024) World Journal of Microbiology and Biotechnology. doi.org/10.1007/s11274-024-04110-y
- 2. FERREIRA et al. (2023) Food Research International. doi.org/10.1016/j.foodres.2023.112793
- 3. CARDOSO et al. (2025) Food and Bioprocess Technology. doi.org/10.1007/s11947-025-03880-z
- 4. ROCHA et al. (2024) Foods. doi.org/10.3390/foods13030454

