

Name: Preetham Gowo Hosaholalu Ramesha

Exploring simple and industrially viable methods for extracting oil from spent coffee grounds: evaluation of extracts' properties with economic feasibility analysis

Preetham Gowda Hosaholalu Ramesha*, Federico Basso, Andrea Natolino, Sandro Sillani, Piergiorgio Comuzzo, Monica Anese Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy

INTRODUCTION

- Spent coffee grounds (SCG), an abundant byproduct of instant coffee manufacturing and food service operations, represent a largely untapped resource rich in bio-actives and lipids [1].
- Despite their potential for valorization, SCG are primarily discarded as organic waste. Currently, only few high-value applications for SCG, including oil extraction, are applied industrially.

- To investigate low cost and low complexity oil extraction techniques realistically adoptable by industry, and to evaluate them in terms of oil yield and quality.
- To assess SCG oil extraction process feasibility at the industrial scale.

EXPERIMENTAL PLAN

SCG collection from coffee bars

- MHE: 20°C, 0.1 MPa, 5-15 min, highspeed stirring
- ASE: 105°C, 10.3 MPa, 6-12 min
 - Soxhlet-hexane based as a reference

Determinations: Oil yield (gravimetric), fatty acids and sterols (GC-MS, GC-FID-MS), diterpenes contents (HPLC), antioxidant activity (DPPH), and oxidative status (peroxide value), thermal behavior (DSC).

Cost estimation: For small-and large-scale SCG oil production, based on initial investment, annual and daily fixed costs, hourly operating costs.

RESULTS

Table 1: Chemical composition and melting temperature of SCG oil

Extraction method and time (min)		Fatty acids		Ctorolo	Ditamanaa	
		Saturated	Unsaturated	Sterols	Diterpenes	Melting
		(g/kg oil)				peak (°C)
Soxhlet	60	350.6 ± 0.2^{ab}	400.6 ± 5.2 ^{ab}	8.2 ± 0.1a	$23.2 \pm 0.9^{\circ}$	3.2 ± 0.04 ^a
MHE	5	392.9 ± 49.8^{a}	432.5 ± 54.0 ^a	8.7 ± 0.1^{a}	21.08 ± 2°	3.2 ± 0.3^{a}
	10	416.9 ± 15.9^{a}	459.1 ± 16.3 ^a	8.5 ± 0.2^{a}	22.8 ± 1.8°	2.9 ± 0.1^{a}
	15	394.4 ± 73.8^{a}	439.1 ± 82.7 ^a	8.4 ± 0.2^{a}	28.8 ± 0.9^{b}	3.1 ± 0.2^{a}
ASE	6	398.9 ± 5.8^{a}	440.0 ± 7.1a	8.2 ± 0.2^{a}	33.9 ± 1.6a	3.1 ± 0.1a
	12	419.7 ± 19.7 ^a	462.1 ± 20.4 ^a	8.1 ± 0.1a	34.6 ± 3.9a	2.9 ± 0.1a

- No significant differences were observed in different extraction methods and time on fatty acids, sterols and melting temperature.
- ASE showed higher diterpenes content compared to MHE and Soxhlet extraction.

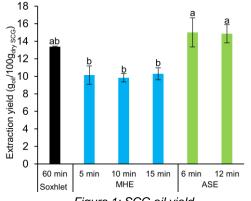


Figure 1: SCG oil yield

 Soxhlet and ASE exhibited the highest oil yield, indicating superior efficiency compared to MHE.

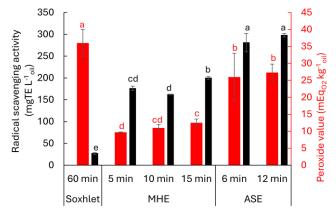


Figure 2: Radical scavenging activity and peroxide value

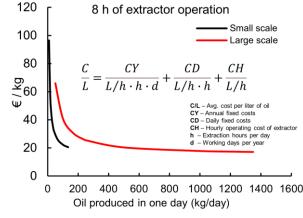


Figure 3: SCG oil cost estimation

- ASE and MHE showed the highest radical scavenging activity compared to Soxhlet extraction.
- ASE and Soxhlet exhibited significantly higher peroxide values compared to MHE.
- Small-scale system unit production cost is initially high at low output but decreases rapidly as daily oil production increases.
- Large-scale system exhibit consistently lower costs across all production levels, reflecting superior cost efficiency.

Conclusion

- Bioactive-rich oil can be extracted from spent coffee grounds using moderate processing techniques suitable for industry.
- Economic analysis shows that large-scale systems are consistently more costefficient, while small-scale systems benefit greatly from increased output.

References:

- 1. Forcina et al. 2023. J. Clean Prod. 385, 135727.
- 2. Basso et al. 2025. J. Agri. Food Res. 24, 102417.
- 3. de Melo et al. 2014. J. Sup. Fluids. 24, 150-159.

Funding: This study was funded by the European Union-NextGenerationEU, in the framework of the iNEST-Interconnected Nord-Est Innovation Ecosystem (iNEST ECS00000043-CUP G23C22001130006).