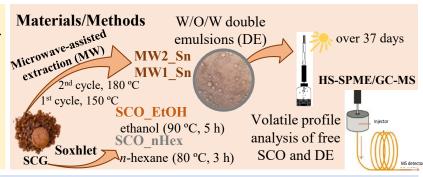


Valorisation of Spent Coffee Grounds for Double Emulsion-based Oil Preservation


Sílvia Petronilho¹ (silviapetronilho@ua.pt), Margarida Fundevila², Cláudia P. Passos²

¹LAQV/REQUIMTE & CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

²LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

Introduction

Coffee industry generates substantial amounts of spent coffee grounds (SCG), a largely underutilized byproduct with promising potential for sustainable applications. This study explores the usage of SCG to produce double emulsions (DEs), for edible oil protection against oxidation, following the circular economy principles.

Results/Discussion

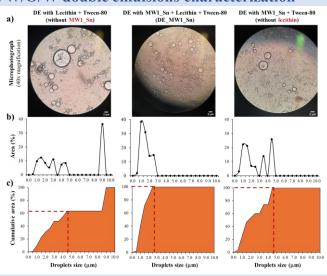

1. Yield and characterization of the recovered SCO

Table 1. Oil extraction yield, esterified fatty acids profile, density, total phenolics (TPC) and antioxidant potential (IC_{50}) of SCO recovered by Soxhlet with *n*-hexane and ethanol.

		SCO_nHex	SCO_EtOH
Yield (%)		13.2 ± 0.5	9.9 ± 0.7
Fatty acids (mol%)		
Palmitic	C16:0	37.6 ± 2.5	40.2 ± 5.0
Stearic	C18:0	6.8 ± 0.1	6.6 ± 0.1
Oleic	C18:1	$10.3\ \pm0.1$	10.0 ± 1.5
Linoleic	C18:2	42.5 ± 2.3	41.2 ± 3.0
Linolenic	C18:3	1.3 ± 0.0	1.5 ± 0.0
Arachidic	C20:0	1.5 ± 0.0	0.5 ± 0.0
Density (g/mL, 25 °C)		0.88 ± 0.1	0.89 ± 0.1
TPC (mg GAE/g SCO)		$10.0\ \pm0.5$	49.8 ± 1.2
IC ₅₀ (mg TOC/g SCO)		360.0 ± 0.7	80.1 ± 0.1

Similar yield and triacylglycerides profile was obtained for both SCO, with higher phenolics and antioxidant potential in SCO_EtOH.

3. W/O/W double emulsions characterization

Figure 1. Optical microscopy at 40x magnification (a), droplets area based on their individual length (b), and cumulative area (c) for W/O/W double emulsions: only surfactants (left); DE_MW1_Sn (middle), and MW1_Sn + Tween-80 (right). Dashed lines indicate predominant droplet size.

DE_MW1_Sn yielded emulsions with higher droplet density and a more uniform and small size distribution, with 100% of droplets below 3 μm, contrasting with irregular sizes and distribution when extract or surfactants were not present. The same for DE MW2 Sn, although initial phase separation (not shown).

Acknowledgments: Thanks are due to the UA and FCT/MCTES for the financial support of LAQV-REQUIMTE (UID/S0006-Laboratório Associado para a Química Verde - Tecnologias e Processos Limpos) and CICECO-Aveiro institute of Materials (UIDB/50011/2020, UIDP/50011/2020, LA/P/0006/2020) research units through PT national funds and, where applicable, co-financed by the FEDER, within the PT2020, Compete 2020. FCT is also thanked for the contract CEECIND/01873/2017 (CP). SP thanks its research contract to the project "FAIST – Fábrica Ágil, Inteligente, Sustentável e Tecnológica" (Project no. 66 with application C644917018-00000031). FCT is also thanked for the Individual Call to Scientific Employment Stimulus (C.P.P., CEECIND/01873/2017; DOI:10.54499/CEECIND/00813/2017/CP1459/CT0053).

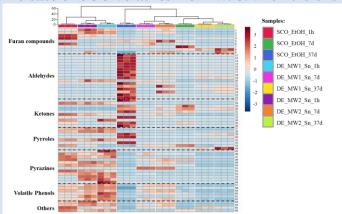

2. Yield and characterization of MW extracts

Table 2. Yield, carbohydrate content and profile and protein, caffeine and CGA contents of SCG and corresponding MW water-soluble extracts (Sn) obtained after MW at 150 °C (MW1) and 180 °C (MW2).

_	SCG	MW1_Sn	MW2_Sn	Ì
Yield of extraction (%, w/w)*	-	16.5 ± 0.5	24.5 ± 3.5	
Carbohydrates content (%, w/w)*	71.3	69.5	80.4	
Monosaccharide composition (mol%))			
Ara	6.1	14.3	9.1	٤
Man	47.2	36.5	36.6	1
Gal	19.3	48.6	54.3	(
Glc	18.5	-	-	2
Protein (%, w/w)*	12.5	13.0	12.0	
Caffeine (% w/w)*	n.d.	1.6	0.7	
CGA (mgCGA/g)*	n.d.	32.6	1.6	
MBI	n.d.	0.00235	0.00528	

MW-derived extracts showed similar galactomannan/arabin ogalactan-rich profiles and protein levels, with MW1_Sn having more chlorogenic acids.

4. Release of SCO volatiles from W/O/W emulsions

Figure 2. Heatmap representation of the 66 volatiles of SCO_EtOH, DE_MW1_Sn, and DE_MW2_Sn after 1h, 7 days, and 37 days of sunlight exposure. Relative content of each compound is illustrated through a chromatic scale (from dark blue, low values, to dark red, high values).

Emulsions protected SCO volatiles and limited oxidation products release over time.

Conclusion/Perspectives

This study demonstrates the feasibility of using SCG for double emulsions preparation, offering a sustainable method for edible oil preservation. This approach not only valorises coffee byproducts but also enhances the sensory quality of oil-based products. Future work may explore the application of this process in food formulations.

Reference:

[1] Passos, C.P.; Rudnitskaya A.; Neves J.M.M.G.C.; Lopes G.R.; Evtuguin D.V.; Coimbra M.A. Carbohydrate Polymers (2019) 214, 53-61.

