

INFLUENCE OF PARTICLE SIZE ON COLOR OF R&G COFFEE

Arne Pietsch

Technische Hochschule Lübeck, 23562 Lübeck, Germany

Rationale

Methods to quantify roast color are of high importance in process control for coffee manufacturers and are used in coffee research to describe the roast degree. Different optical principles are applied; Industry uses special color scales today often based on reflectance values at 640nm and scientific publications use various systems/scales. Color determination of particulate matter of natural origin is not trivial at all and research is ongoing [1,2]. It is known that particle sizes can influence color readings but nevertheless this effect is often neglected.

Methods

Commercially available roasted arabica coffees were used (Tchibo GmbH, Germany). Beans were ground with a lab burr disk Coffee Grinder EK43 (Mahlköning, Germany, fig.1) and color values obtained with a spectrophotometer CM-5 (Konica Minolta Sensing, Japan; fig2). Ground coffee was placed in clear optical glass dishes Ø 60mm (target size Ø 30mm, 10°C, D65). Reflectance at 640nm and L*,a*,b*,c* were determined, at least five times. An Air Jet Sieve Machine (Alpine, Germany) with certified test sieves (NEXOPART GmbH&Co.KG; Germany) was used to obtain R&G coffee samples with a span of ~ $200\mu m$ – indicated in this text as "narrow particle size distribution NPSD". A Dynamic Image Analysis System QICPIC -Rhodos/Succell (Sympatec GmbH, Germany; fig.3) was used to determine particle size distributions (PSD).

Results

In previous investigations [4] was shown, that different available R&G coffee color determination systems can lead to different color values (fig.4). The strong influence of individual sample preparation is well known. In this study shaking of the samples or compacting with weights was investigated systematically: influence on all color readings is not negligible (see fig.5.+6). All further measurements were made avoiding any shaking movement and under reproducible compaction.

Fig. 7 illustrates the expected findings: especially for particle sizes $D_{50} < 500$ μm color values are significantly influenced: Reflectance at 640 nm increases with decreasing particle size for a filter and an espresso coffee sample. The same was detected for L* values, a* and b* values decrease (not depicted here). This effect can increase, when samples of more uniform particle size (narrow PSD) are investigated. The influence on color is then easily observable with the naked eye (fig.9). Fig. 7 furthermore additionally illustrates the influence of sample temperature and industrial grinding vs lab milling.

Smaller particle sizes result in a finer texture which creates a smoother coffee surface. Thus when a detecting light ray hits this smoother surface, the rate of absorbance is relatively low due to minimal pores, leading to higher reflectance and Luminscence L* values. The same was detected for a* and b* values (not depicted here) and Chromaticity c* does not work well for R&G. Positive values of a* indicate more reddisch and b* more yellowish.

Conclusions & Perspectives

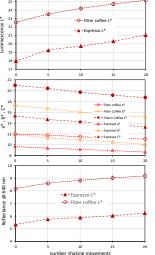
The effect of particle sizes, particle size distributions and thus the applied milling technology on various color readings is not negligible. In industry grinders for process samples need monitoring and in scientific studies PSD should be recorded and deliberately chosen. Research is continued.

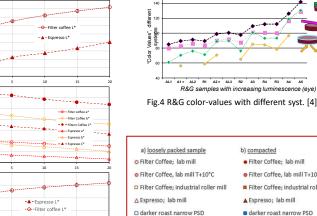
Fig.1 Burr Grinder

Fig.2 Spectrophotometer

Fig.3 Dynamic Image Anal

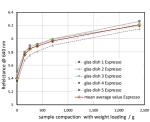
b) compacted


• Filter Coffee; lab mill


▲ Espresso: lab mill

SFilter Coffee, lab mill T+10°C

■ Filter Coffee; industrial roller mill


500

ctance @ 640

Fig.5 influence of shaking samples

particle size D_50 / µm Fig.7 influence of particle size distribution

200

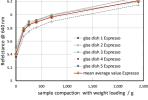


Fig.6 influence of compacting samples

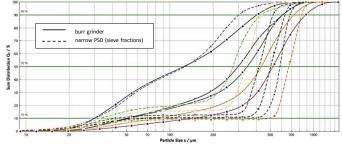


Fig 8. PSD of investigated samples

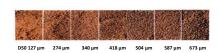


Fig.9 Foto identical arabica coffee, sieved particle size fractions; narrow PSD

- [1] Anokye-Bempah, L., Styczynski, T., Ristenpart, W.D. et al. A universal color curve, for roasted grapica coffee, Nature Sci Rep 15, 24192 (2025).
- (1) Arlowe-Berlipair, L., Sykzytiski, T., Kistelipair, W.D. et al. A universal color curve por rousted arbaica copiet. Nature so Nep 1.5, 24192 (2025). [2] De Carvalho Pires F., Da Silve Mutzt, Y. et al. Feasibility of using colorimetric devices for whole and ground coffee roasting degrees prediction. J Sci [3] Mugabi, R. Effect of Particle Size on Color of Ground Coffee, AFSJ 75316 (2010) [4] Pielsch A.; Ametepey, D: Hintergründe und Varianten der Farbbestimmung von Röstkaffee, GDL Kongress Lebensmitteltechnologie 2024, Lemgo etric devices for whole and ground coffee roasting degrees prediction. J Sci Food Agric 104, (2024)