

Influence of geographical origin, post-harvest processing and brewing method on quercetin derivatives in roasted graphica coffee

ercetin

30th Conference 27-31 October SiC 2025

Agnese Santanatoglia^{1,2}, Luciano Navarini³, Simone Angeloni¹, Gianni Sagratini¹, Sauro Vittori¹, Giovanni Caprioli¹

¹ Chemistry Interdisciplinary Project (ChiP), School of Pharmacy, University of Camerino, Italy

² Research and Innovation Coffee Hub. Via Emilio Betti 1. Belforte del Chienti. Italy post-harvest processing 3 Illycaffè S.p.A., Via Flavia 110, 34147 Trieste, Italy agnese.santanatoglia@unicam.it NATURAL WASHED validation of extraction UHPLC-ESI-MS/MS extraction quantification methods procedures HONEY geographical BRAZIL GUATEMAI A **ETHIOPIA**

Workflow

Introduction

Coffee, a widely consumed beverage, is valued for both its flavor and bioactive compounds. Among these, quercetin and its derivatives—classified as flavonoids—are known for their potential health benefits, including antioxidant, anti-inflammatory and neuroprotective properties 1-2. While quercetin is found in green coffee beans 3, its presence in roasted coffee and popular beverages like espresso and moka is less understood. This study focuses on quantifying six quercetin derivatives in Coffea arabica beans from five geographical origins (Brazil, Colombia, Ethiopia, Guatemala, India), prepared using two brewing methods (espresso, moka). Additionally, the impact of different post-harvest processing methods (Natural, Washed, Honey) on the quercetin content is examined.

Materials and Methods

Coffee samples:

Roasted Coffea arabica samples from five origins: Brazil, Colombia, Ethiopia, Guatemala and India were provided by Illycaffé S.p.A. Three samples from Guatemala (Natural. Washed, Honey) were provided

Three samples from *Guatemala* (Natural, Washed, Honey) were provide by Perfero Caffè.

Extraction procedures:

Three methods were evaluated to optimize the recovery of quercetin and its derivatives from roasted coffee:

Acidic hydrolysis: 1 g of roasted coffee was treated with 10 mL of 70% ethanol at pH 2 (adjusted with 2N HCl), sonicated at 60°C for 90 minutes, followed by centrifugation at 5000 rpm for 10 minutes.

Alkaline hydrolysis: similar to acidic hydrolysis but with pH 9 (adjusted with NaOH).

Direct solvent extraction: 70% ethanol with no pH adjustment, sonicated at 25°C for 90 minutes

Coffee beverage preparation:

Espresso (EC): prepared using a VA388 Black Eagle Maverick machine, 25 ± 2 mL of espresso was extracted from 9 g of ground coffee at 93°C. Moka (MC): 250 mL of water and 25 g of ground coffee were used in a MOKA EXPRESS* coffee maker. The preparation lasted about 10-15 minutes.

COLOMBIA

INDIA

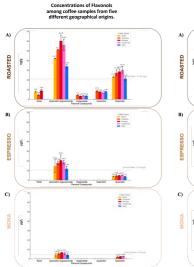
Quantification of guercetin derivatives:

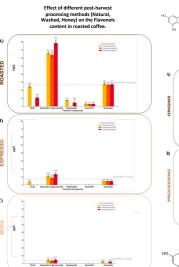
Analytes were determined using HPLC-ESI-MS/MS, equipped with a Synergy polar-RP 80Å analytical column. Separation was achieved using a gradient elution with water and methanol (both with 0.1% formic

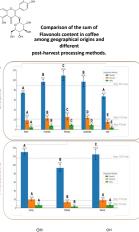
Six quercetin derivatives were quantified: quercetin, quercetin-3-glucuronide, rutin, hyperoside, quercitrin and isorhamnetin.

Statistical analysis

All experiments were performed in triplicate and differences in analyte concentrations were evaluated using one-way **ANOVA** with post-hoc Tukey HSD tests (p < 0.05).


References


- 1- Kumar, D., & Sharma, P. K. (2024), Quercetin: A Comprehensive Review, Current Nutrition & Food Science, 20(2), 143-166.
- 2- Várady, M., Tauchen, J., Fraňková, A., Klouček, P., & Popelka, P. (2022). Effect of method of processing specialty coffee beans (natural, washed, honey, fermentation, maceration) on bioactive and volatile compounds. LWT. 172. 114245.
- 3- Mustafa, A. M., Abouelenein, D., Angeloni, S., Maggi, F., Navarini, L., Sagratini, G., Santanatoglia, A., Vittori, S. & Caprioli, G. (2022). A new HPLC-MS/MS method for the simultaneous determination of quercetin and its derivatives in green coffee beans. Foods, 11(19), 3033.
- 4- Santanatoglia, A., Navarini, L., Angeloni, S., & Caprioli, G. (2025). Quercetin derivatives in roasted Coffea arabica and its popular beverages. Food Chemistry, 473, 143035.


Results

Ethiopian coffee had the highest total quercetin derivatives content, with 108.85 ± 10.03 ng/g, primarily quercetin-3-glucuronide (60.28 ± 5.95 ng/g). Guatemalan and Colombian coffees also exhibited high levels of quercetin derivatives, with total contents of 96.56 ± 9.89 ng/g and 96.17 ± 5.02 ng/g, respectively. Indian and Brazilian coffees had comparatively lower levels of flavonoids, particularly quercetin-3-glucuronide. Honey processed coffee from Guatemala showed the highest total quercetin content (129.75 ± 5.1 ng/g), followed by Natural processing (124.28 ± 12.2 ng/g). Washed coffee had the lowest quercetin content across all geographical origins, suggesting that less invasive processing methods (e.g., Natural and Honey) preserve quercetin derivatives more effectively. Espresso extraction yielded higher flavonoid content than Moka, particularly for Ethiopian (25.32 ± 5.95 μg/L) and Guatemalan (23.59 ± 2.35 μg/L) coffees ⁴.

Total flavonol content was consistently higher in espresso samples across all origins compared to moka, likely due to the higher pressure and temperature used in espresso preparation.

