DE LA RECHERCHE À L'INDUSTRIE

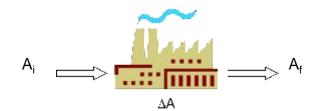
Moyens de cartographie radiologique

EVALUATION DE L'ETAT RADIOLOGIQUE - A&D2

ATSR, La Grande Motte | Philippe GIRONES Avec la contribution du : DTEC, DTN

SOMMAIRE

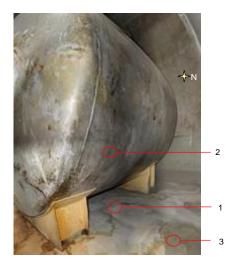
- 1. Le contexte, des définitions, des exigences (3 Diap.)
- 2. Les moyens de collecte du descripteur spatial (3 diap.)
- 3. Les moyens de relevé radiologique (5 diap.)
- 4. Les moyens de traitement des données (2 diap.)

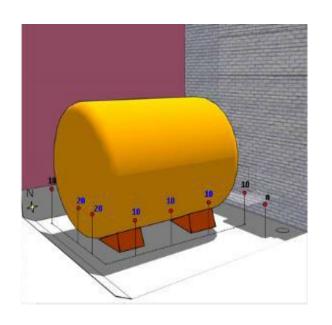

Un contexte Une nouvelle définition du terme source

Sujet: De l'historique du site à sa reconnaissance radiologique, les moyens de cartographie radiologique

La cartographie a toujours été utilisée pour statuer sur l'état radiologique d'une installation, d'un équipement. Dans la phase d'assainissement, démantèlement et déclassement (A&D²) elle représente l'historique de l'installation et son évolution vers une cible.

Le projet d'A&D² impose une nouvelle **vision** du « terme source » ΔA , $\Delta \acute{e}l\acute{e}ments$

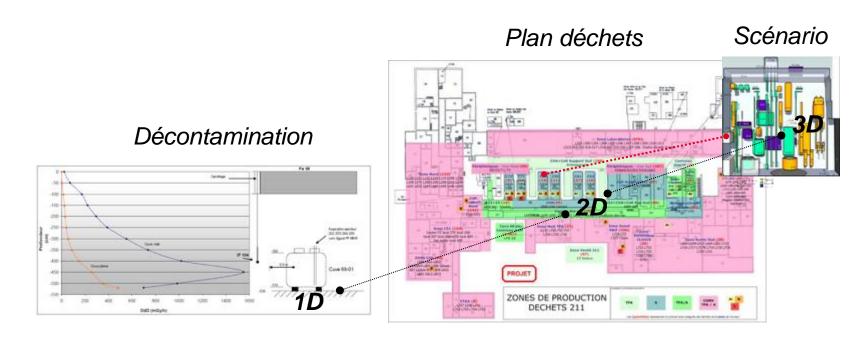

- ⇒ Complément du référentiel technique d'installation : sûreté, radioprotection
- ⇒ Mettre en place des procédés : qualité de produits
- \Rightarrow f(temps) = min (Gy, Bq, (n, f), éléments) : scénarios



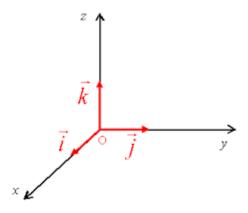
Une définition Un support, des outils de cartographie

Représentation graphique -> Structuration de l'information

Frottis	Contamination surfacique (Bq/cm²)	
	α	β
1	< 1,7	0
2	< 1,7	0
3	< 1,7	1


La carte (cartographie radiologique) est un support ou « frontal » de l'information de référence spatialisée, elle se présente sous forme d'un objet composite numérique reconnue par l'entreprise.

Des exigences Le découpage, la qualité des relevés


Résolution spatiale, qualité des relevés (x, y, z, ddd, conta,...)

- 1. Les **risques** (sûreté, radioprotection),
- 2. La catégorisation des déchets (produits).

→ Moyens de réalisation ?

- 1. Le contexte, des définitions, des exigences
- 2. Les moyens de collecte du descripteur spatial
- 3. Les moyens de relevé radiologique
- 4. Les moyens de traitement des données

 $(\mathbf{O}; \vec{I}, \vec{J}, \vec{K})$

LES MOYENS DE COLLECTE DU DESCRIPTEUR SPATIAL

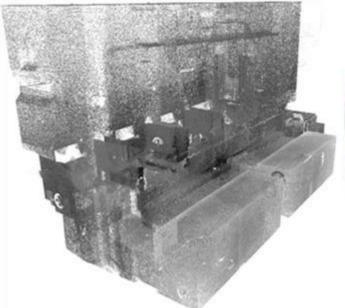
Image

La première étape vers la représentation

Le constat visuel, les caméras

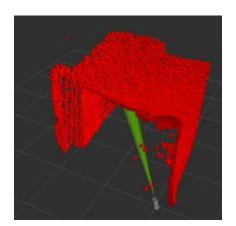
Verrous technos

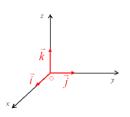
- 1. Définition (résolution) des capteurs
- 2. La commande
- 3. La tenue à la dose



Référence de Webcam	Dose limite (Gy, source ⁶⁰ Co)
Lifecam studio, Microsoft	1380
C920, Logitech	600
C525, Logitech	860

Nuage de points La télémétrie

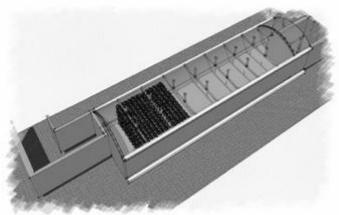

La télémétrie laser, relevé du points



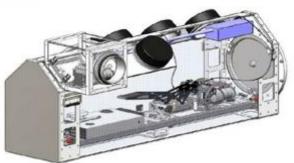
- 1. La technologie des capteurs
- 2. La communication
- 3. La tenue à la dose, contamination

Le Light Detection And Ranging (LIDAR).

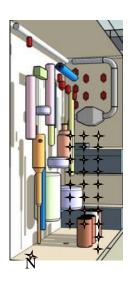
Image \rightarrow (x, y, z)



Les moyens de collecte du descripteur spatial Résumons-nous!


Solutions dédiées aux relevés dimensionnels

Etude de tenue à la dose Robot dédié



→ Un système

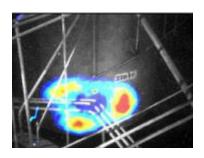
- 1. Le contexte, des définitions, des exigences
- 2. Les moyens de collecte du descripteur spatial
- 3. Les moyens de relevé radiologique
- 4. Les moyens de traitement des données

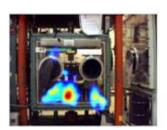
LES MOYENS DE RELEVÉ RADIOLOGIQUE

Les techniques de relevé radiologique direct Des moyens de radioprotection aux systèmes innovants

Carte de contraste

Prolongation des pratiques de radioprotection : mesure de DDD, prélèvements puis analyses.

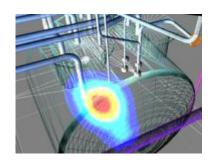

→ Maitrise de la diffusion

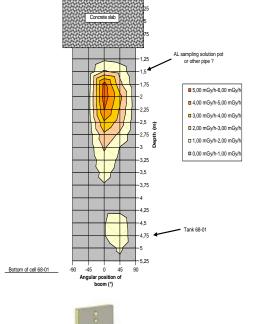

1,66 04 1,46 08 1,26 08 1,26 06 1,26 05 4,06 05 4,06 05 2,06 05 1,06 00 Energie du photon incident, MeV

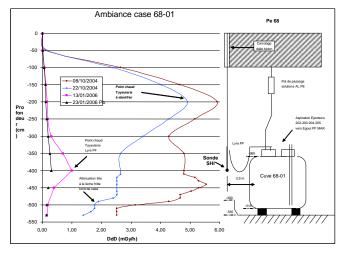
	Altimétrie (cm)	DdD (mGy/h)
0	800	142
200	750	171
	700	207
	650	252
_	600	332
	550	438
	500	562
	450	705
	400	970
	350	800
	300	893
	250	936
	200	1098
	150	784
-	100	747
//	50	452
/	0	320
8		

Imagerie

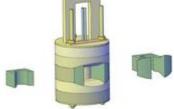
Technique mature en cours d'évolution (optique, matériaux sensibles, particules chargées...)


→ Imageur neutron, couplage des technologies



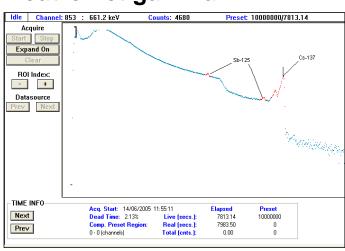

Suivi d'assainissement Un exemple _ Une cuve PF (carte dynamique)

Suivi d'assainissement : imagerie, ddd



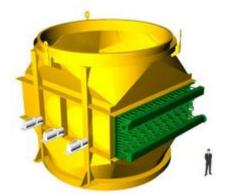
- → Besoin de développement de techniques
- → Couplage méthode → monitoring

Les techniques d'analyse (lecture indirecte) Analyses qualitative et quantitative


Les systèmes de caractérisation radiologique : neutron et gamma

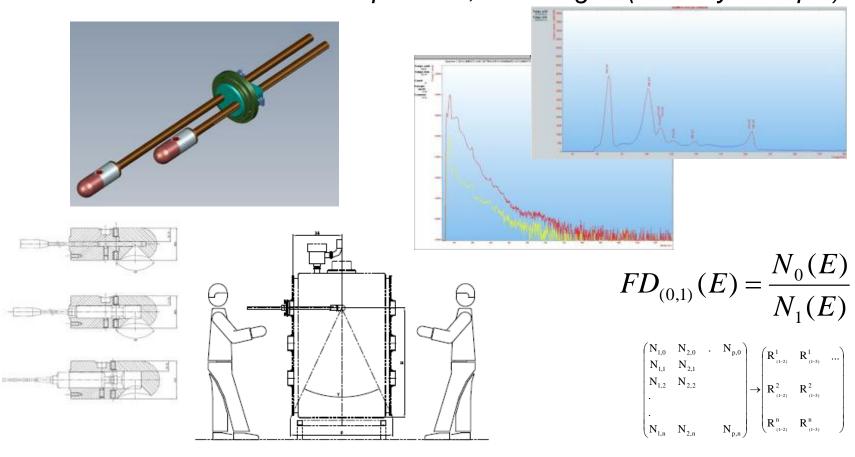
- · Le traitement absolu/Débit de fluence,
- Le traitement relatif.
- → Qualitatif, quantitatif

Dépend du contexte et des radionucléides



Méthodes numériques de tracé du rendement global Fonction dépendante d'un nombre important de variables

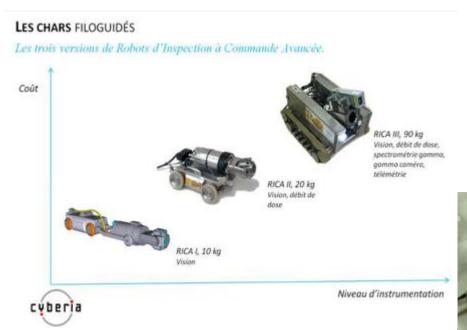
- → Couplage méthodes numériques/traitement
- → Qualité de la matrice (analyse chimique quantitative)
- →Expression de l'incertitude associée à la grandeur d'intérêt



Acquisition, Boite à Gants Maitrise de la masse de matière en ligne

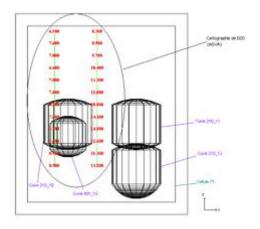
Intégration d'un système de contrôle en ligne en BàG

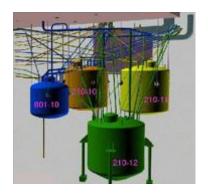
Pas de modification du procédé, FD en ligne (carte dynamique)



→ Relié au centralisateur de données, carte dynamique

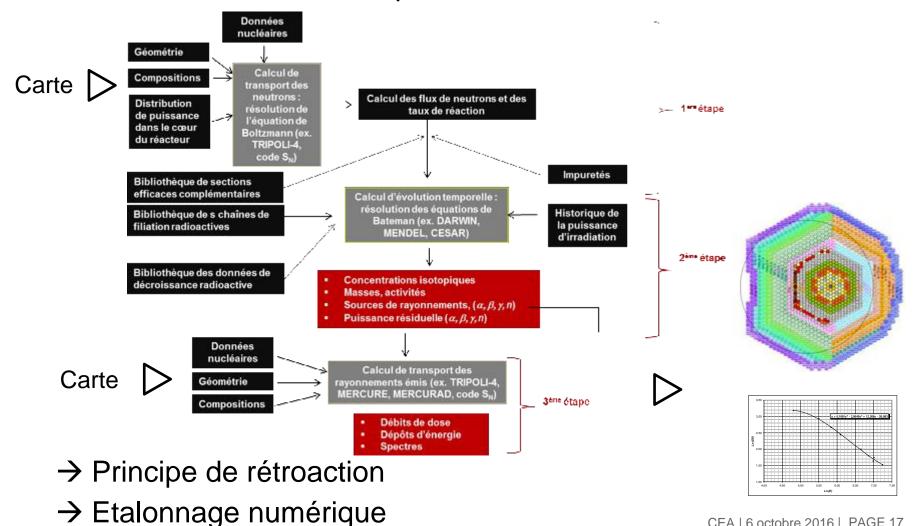
Les outils de collecte de données in situ radiologique Résumons-nous!


La cartographie radiologique/Système



→ Les robots capteurs

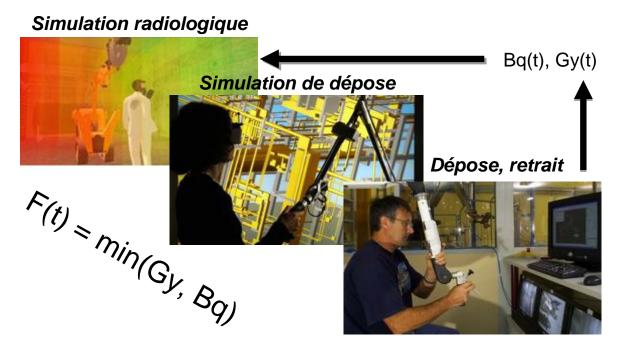
- 1. Le contexte, des définitions, des exigences
- 2. Les moyens de collecte du descripteur spatial
- 3. Les moyens de relevé radiologique
- 4. Les moyens de traitement des données



LES MOYENS DE TRAITEMENT (CALCUL)

Le calcul, les codes Un formulaire intégré à la carte

La carte est instrumentée par les codes

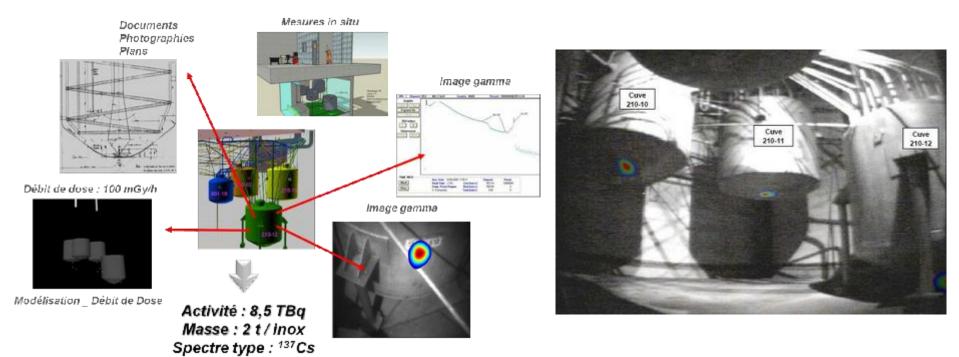


Le code de calcul au centre de la carte Résumons-nous!

La carte est le support de formulaire de calcul

- 1. Modèle 3D
- 2. Données physicochimiques, spectre type ...

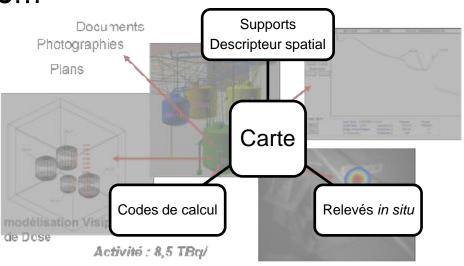
→ Consolidation des données, calculs prédictifs


Une synthèse

La cartographie radiologique, les moyens

Un inventaire des points singuliers Une cartographie!

Le traitement des données, les codes de calcul, le traitement des données avancé



Inventaire des points singuliers, un nouveau référentiel de l'installation.

Une synthèse Des « instruments » pour la cartographie radiologique

- 1. Les progiciels de « fonds » de carte,
- 2. Les robots capteurs,
- 3. Les moyens de calcul et les modèles (robots de calcul),
- 4. Couplage inter disciplinaire...

Masse: 2 t / inox / spectre | Image gamma/localisation point chaud | type

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | 30207 Bagnols sur Cèze T. +33 (0) 04 66 79 63 01 | philippe.girones@cea.fr

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction : DEN
Département : DPAD