

process

Evaluating Potential Trap Crops for Control of Globodera pallida

Paige L. Hickman & Dr. Louise-Marie Dandurand

Department of Entomology, Plant Pathology, & Nematology, University of Idaho, Moscow, Idaho, USA (PDT)

Introduction

Globodera pallida (PCN) found in Idaho in 2006²

- Goals are containment and eradication²
- In Idaho, growers cannot grow potato on infested acreage until PCN is eradicated/fields undergo extensive deregulation
- Hatch must be triggered by a hatching stimulus from host plants or trap crops4
- PCN trap crop must be a nonhost but still induce hatch

Potential Trap Crops of Interest:

- > Solanum aethiopicum (Ethiopian eggplant)
- > Solanum douglasii (greenspot nightshade)
- Solanum macrocarpon (African eggplant)
- > Solanum quitoense (naranjilla)
- > Solanum retroflexum (wonderberry)
- > Solanum sisymbriifolium (litchi tomato)
- ➤ Chenopodium quinoa

- Sources Cited Contina, J. B., Dandurand, L. M., & Knudsen, G. R. (2020). A Spatiotemporal Analysis and Dispersal Patterns of the
- Potato Cyst Nematode Globodera pallida in Idaho. Phytopathology, 110(2), 379-392. Dandurand, L. M., Zasada, I. A., Wang, X., Mimee, B., De Jong, W., Novy, R., ... & Kuhl, J. C. (2019). Current status of potato cyst nematodes in North America. Annual review of phytopathology, 57, 117-133.
- ⁴Franco, J., Main, G., & Oros, R. (1999). Investigation-Research: Trap Crops as a Component for the Integrated Management of Globodera spp. (Potato Cyst Nematodes) in Bolivia. Nematropica, 51-60. ⁴ Jones, J. (2017). The Fascinating Biology of Potato Cyst Nematodes. Globodera Alliance Newsletter

Figure from Contina et al. 2020. Red points show PCN-infested potato acreage in Idaho, Green points show non-infested acreage.

Objectives

- 1. Evaluate potential of other species with commercial potential as trap crops.
- 2. Quinoa has shown potential as a trap crop, inducing PCN hatch.3 Compare trap crop efficacy with litchi tomato.

Methods

Host assay: Trap crops and susceptible potato controls were

Trap Crop Evaluation:

two weeks to determine hatch (%).

inoculated with PCN and grown for 12 weeks. Cysts were extracted from soil and counted. Hatch Assay: Root exudates were collected from each crop for

hatching assays. Hatched juveniles were enumerated after

In Field Comparison of Litchi Tomato & Quinoa:

- 1. Litchi tomato, quinoa, or barley (non-trap crop) were grown in infested soil under field conditions for 12 weeks.
- 2. Remaining encysted eggs were counted. Hatch and egg viability were assessed.
- 3. Ability of cysts to reproduce subsequent to trap crop exposure was assessed on the susceptible potato variety "Russet Burbank"

Conclusions

- Of the species tested, both S. retroflexum and S. guitoense were effective trap crops.
- In the field, litchi tomato and guinoa reduced viable PCN eggs more than barley. PCN reproduction in potato was significantly reduced by both litchi tomato and quinoa compared to barley
- While less effective than litchi tomato, guinoa also reduced PCN, making it a valuable trap crop while providing an economic benefit to the grower.

Results

Figure 1. Solanaceous trap crop PCN hatch. Average % PCN egg hatch 2 weeks after exposure to the trap crop root exudates.

*Different letters indicate significant difference as determined by least squares means separation

In Field Comparison of Litchi Tomato & Quinoa

 After 12 weeks of growth in the field, encysted eggs were reduced 41% by guinoa and 62% by litchi

tomato, compared with the barley control

- Litchi tomato also significantly reduced egg viability compared to guinoa and barley
- After growing susceptible potato following trap crop exposure, quinoa plots showed 40% less reproduction than barley plots, while litchi tomato plots had 97% less reproduction than barley plots