

Impact of climate change on fish defences against infectious diseases

- 34, 300 fish species, > combined number of all other vertebrate species
- Marine, brackish and freshwater, anadromous, catadromous

AQUATIC ENVIRONMENT

greater instability in abiotic factors affecting physiology

Importance of fish and fisheries

Controlling food webs

Grazing on primary producers Predation on animals Food for top predators

Ecosystem engineering

Bioturbation of sediment Bioerosion of substrate

Participating to nutrient cycles

2010

Nutrient excretion and egestion Nutrient transport Decomposition of carcasses

Villéger et al. (2017)

Example of Anodonta (river mussel): dependent on fish to complete life cycle (parasitic larvae)

leshko et al. (2016)

Ecosystem

Food-producing sectors

2016

World Information Transfer, Inc.

FAO.org

2014

2012

L6 2018

Data from FAO (2020)

Antimicrobial Resistance

- High level of AMR in aquaculture sector in many countries and correlated with warmer waters
- Metadata analysis shows that MAR (Multi-Antibiotic Resistance) indices correlate with MAR indices from human clinical bacteria, temperature and countries' climate vulnerability
- Majority of antimicrobials administered to aquatic farmed animals disseminate to nearby environments favouring AMR development

Reverter et al. (2020); Alves Resende et al. (2020)

Antibiotic use in fish in relation to Norwegian salmon production

Furunculosis affected fish

Fredrick Witte; MSD (figure); Sommerset et al. (2005)

Zoonoses

Mycobacterium spp.
Streptococcus iniae
Clostridium botulinum
Vibrio vulnificus

Lactococcus garvieae

Gauthier (2015); Meyburgh et al. (2017)

- diarrhoea, vomiting, dehydration
- endocarditis, peritonitis meningitis in human
- * few studies with strong epidemiological links between fish and human

Trematode

Cestode

Nematode

- intestinal, pancreatic, bronchial disease, allergic reaction
- cancerous or precancerous growths

Bao et al. (2017); Shamsi (2019)

Diphyllobothriosis; liver/intestinal flukes; Anisakiosis

Fish immune response and climate change effects

Main components of immune system similar to mammals

- Innate responses: leukocytes, proinflammatory, anti-viral, respiratory burst, lysozyme
- Adaptive response: B-cells, antibody generation, cytotoxic T-cells
- Specialised mucosal tissues, mucosal antibody IgT

Mucosal surfaces (skin, gills, gut): first line of defence

Mucins; antimicrobials; humoral and cellular immune factors (specialised)

Available diet

- · modified mucins
- · bacterial attachment

Modified microbiome

- good/bad
- reduced bacterial diversity
- predominance of pathogenic species

UV

- good/bad
- sterilising
- lesion &pathogen entry

Harmful algal blooms

- stress
- lesions
- hypoxia

Temperature effect on fish immune parameters

Optimal temperature for immune responses varies with species

Dittmar et al. (2014)

Hyperthermia – resulting in detrimental immune response?

Higher proinflammatory and antibody levels over 5 weeks of infection at 15 °C (red); higher clearance rate of *Brucella*, yet lower survival.

Concluding remarks

- climate changes affect fish immune responses
- higher temperatures, within host range, should increase magnitude of immune response
- changes in immune response may be more effective for viral infection than for bacterial (trend as seen in experimental viral and bacterial fish challenges)
- changes in immune response may improve control of low level environmental pathogens, but not likely to counteract increased pathogen pressure overall
- temperatures exceeding thermal range may clear pathogen but damage fish in process

Pathogen	type	Disease
Salmonid alphavirus	V	<11°C
Spring viraemia of carp virus	V	10–17°C
Koi herpesvirus	V	16–28°C
Flavobacterium psychrophilum	В	<10°C
Yersinia ruckeri	В	>8°C
Renibacterium salmoninarium	В	>13
Lactococcus garvieae	В	>16°C
PKD parasite	Р	>15°C
V virus; B bacteria; P parasite		

- many aquacultured fish species already grown at high temperatures to favour growth
 - therefore margin for additional increase in temperature without detrimental effect is small

Concluding remarks

- diseases are emerging, but little consensus that these linked to climate change/changes to host response
- some capacity for artificial genetic selection to thermal tolerance in aquacultured fish
 thermal tolerance enhanced over 3 and 15 generations for sticklebacks and rainbow trout
- improved farmed fish health will benefit wild fish health

Teixeira & Taylor (2020); Tompkins et al. (2015)

- additional studies required on multifactorial effects on immune response
- robust metadata analysis complicated by small size of research community and multiple fish models

Disease in freshwater wild fish populations

Primary drivers of disease emergence from 2000 onwards (few publications met selection criteria for inclusion in analysis)

References

Tompkins, D.M. et al. Emerging infectious diseases of wildlife: a critical perspective. Trends in Parasitology 31, Issue 4, 149-159, (2015), ISSN 1471-4922, https://doi.org/10.1016/j.pt.2015.01.007.

Teixeira, A. & Taylor, N.G.H. Models suggest pathogen risks to wild fish can be mitigated by acquired immunity in freshwater aquaculture systems. Sci Rep 10, 7513 (2020). https://doi.org/10.1038/s41598-020-64023-2

Baumann, H. et al. Large Natural pH, CO₂ and O₂ Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales. Estuaries and Coasts 38, 220–231 (2015). https://doi.org/10.1007/s12237-014-9800-y

leshko, E.P. et al. *The characteristics of the infection of juvenile Atlantic salmon with glochidia of the freshwater pearl mussel in rivers of Northwest Russia*. Knowledge and Management of Aquatic Ecosystems (2016) 417, 6, DOI: 10.1051/kmae/2015039

Villéger, S. et al. Functional ecology of fish: current approaches and future challenges. Aquat Sci 79, 783-801 (2017). https://doi.org/10.1007/s00027-017-0546-z

FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome: https://doi.org/10.4060/ca9229en

Alves Resende, J. et al. Acta Limnologica Brasiliensia, (2020), vol. 32, e102, https://doi.org/10.1590/S2179-975X4719

Reverter, M. et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun 11, 1870 (2020): https://doi.org/10.1038/s41467-020-15735-6

Sommerset, I. et al. Vaccines for fish in aquaculture, Expert Review of Vaccines, (2005) 4:1, 89-101, DOI: 10.1586/14760584.4.1.89

Shamsi, S. Seafood-Borne Parasitic Diseases: A "One-Health" Approach Is Needed. Fishes (2019), 4, 9.

Gauthier, D.T. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J. (2015) Jan;203(1):27-35. doi: 10.1016/j.tvjl.2014.10.028. Epub 2014 Oct 28. PMID: 25466575.

Bao, M. et al. Assessing the risk of an emerging zoonosis of worldwide concern: anisakiasis. Sci Rep 7, 43699 (2017). https://doi.org/10.1038/srep43699

Meyburgh, C.M. et al. Lactococcus garvieae: an emerging bacterial pathogen of fish. Dis Aquat Organ. (2017) Feb 8;123(1):67-79. doi: 10.3354/dao03083. PMID: 28177294.

Abram, Q.H. et al. Impacts of Low Temperature on the Teleost Immune System. Biology (Basel). 2017 Nov 22;6(4):39. doi: 10.3390/biology6040039. PMID: 29165340; PMCID: PMC5745444.

Larsen A.K. et al. Concomitant Temperature Stress and Immune Activation may Increase Mortality Despite Efficient Clearance of an Intracellular Bacterial Infection in Atlantic Cod. Front Microbiol. (2018) Dec 4;9:2963. doi: 10.3389/fmicb.2018.02963. PMID: 30564213; PMCID: PMC6289035.

Rakus, K. et al. *Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-\alpha Receptor Delays Behavioral Fever in Fish. Cell Host Microbe*. (2017) Feb 8;21(2):244-253. doi: 10.1016/j.chom.2017.01.010. PMID: 28182952; PMCID: PMC5301049.

Boltaña, S. et al. Behavioural fever is a synergic signal amplifying the innate immune response. Proc Biol Sci. (2013) Sep 7;280(1766):20131381. doi: 10.1098/rspb.2013.1381. PMID: 23843398; PMCID: PMC3730603.