

Effect of climate change on plant immunity: towards robust resistance to *Ralstonia solanacearum*

Richard Berthomé

LIPM, REACH team led by L. deslandes "Plant **RE**sistance pathway dynamics and Adaptation to climate **CH**ange"

Plants are submitted to a large variety of stresses

Plants are submitted to a large variety of stresses

Consequences and predictions of climate warming

• Global mean surface temperature augmentation

 $2.0 \longrightarrow 4.9^{\circ}\text{C by } 2100$

- Consequences
 - Heat waves frequency, intensity and duration
 - Species extinction, ecosystem destruction, diversity depletion, pathogens emergence and distribution
 - Humans: social and economical disparities, epidemics, food security, hunger, health, migrations....

Describe, limit... adapt

A tripartite interaction: Plant - Biotic stress – Abiotic stress

A - Plant immunity

QDR

pathway

#3

B - Impacts of elevated temperatures on plants

C - Impacts of elevated temperatures on pathogens

Mainly epidemiological

- Improved fitness
- Longer reproduction period
- · Increased reproduction rate
- Increased virulence (bacteria and fungi)
- Influence on replication and growth (viruses)
- · Increased epidemic risks

Temperature elevation compromises plant defenses

Crucial to identify or promote robust resistance

Pathosystems studied

Ralstonia solanacearum

- Widespread species complex
- Equatorial, tropical and warm temperate regions
- Soil-borne bacterium
- Vascular pathogen
- Hemibiotroph
- 250 plants species

Plants

Model plant: Arabidopis thaliana

Model crop: Solanum lycopersicum

Few sources of resistance known in A. thaliana and tomato

A. thaliana: 2 major resistance mechanisms

S. lycopersicum L.: 2 major QTLs

ERECTA

RPS4/RRS1-R

Deslandes et al. (2002) Sarris *et al.* (2015) Le Roux *et al.* (2015) Godiard et al. (2003)

Bwr-6 •

Bwr-12

Carried by a major tolerant cultivar 'Hawaii 7996'

Carmeille et al. (2006) Wang et al. (2013)

Few sources of resistance known in A. thaliana and tomato

A. thaliana: **2** major resistance mechanisms

S. lycopersicum L.: 2 major QTLs

Impaired at elevated temperature

Plant immunity under heat stress

(Objectives)

Mechanisms involved in plant defense inhibition

Identify robust resistances: genome wide association mapping approach (GWA)

Phenotypic diversity of response of 200 accessions of tomato to *R. solanacearum*

Genetic diversity

Chromosome

Genetic bases of robust resistance to *R. solanacearum* under heat stress

Aoun et al. (2017, 2020)

Robust resistance mechanisms to *Ralstonia* in tomato

Robust resistance mechanisms to *R. solanacearum* under heat stress

- Genetic diversity + GWAs
 - o powerful to identify robust resistances to *R. solanacearum* under heat stress
- Several QTLs corresponding to genes involved in QDR
 - Not common defense related genes
 - Susceptibility genes,
 - functions: cell wall, DNA methylation, miRNA regulation, biotic and abiotic response
 - Functional validation
 - Functional characterization (Cell wall / epigenetic / thermostable *R* gene)
 - Applications: plant breeding identification of markers, haplotypes, ideotypes

Integrate the complexity of the interactions in a natural context

Plant-Plant associations in the interaction with pathogen and environment?

- Effect on plant defenses under heat stress?
- Intra/inter species?
- Mechanisms?
- Link with microbiota?

Microbiota and immune response to *R. solanacearum* in fluctuating environment?

- Communities?
- Fluctuation?

-Resistant/susceptible plant

-Climate

→mechanisms

→biocontrol solutions

→cultivation practices

To maintain or promote resistance

REACH team :

Plant REsistance pathways dynamics and Adaptation to climate CHange

6 research scientists

IE TRE

*

PhD students, post-docs, M2R/M1 students... and all former team members.

Collaborations

S. Genin L. Noël

F. Roux

J. Gouzy (Bioinf. Platform)

L. Navarro (IBENS)

C. Raynaud/M. Benhamed (IPS2)

S. Vernhettes/T. Mary-Huard/ M. Causse (INRAE)

S. Poussier/C. Jourda/Y. Pecrix (PVBMT)

<u>national</u>

syngenta

*

G. Bonnet C. Labourey C. Sauvage P. Piamjit

<u>international</u>

Private partner